如图所示,质量M=10kg、上表面光滑的足够长木板在F=50N的水平拉力作用下以v0=5m/s初速度沿水平地面向右匀速运动,现有足够多的小铁块,它们质量均为m=1kg,将一铁块无初速地放在木板最右端,当木板运动了L=1m时,又无初速地在木板最右端放上第二个铁块,只要木板运动了L就在木板最右端无初速地放一铁块。求:(g=10m/s2)

⑴第一个铁块放上后,木板运动1m时,木板的速度多大?
⑵最终能有几个铁块留在木板上?
⑶最后一个铁块与木板右端距离多大?
如图所示,斜面倾角为,一质量为的木块恰能沿斜面匀速下滑,若用一水平恒力F作用于木块上,使之沿斜面向上做匀速运动,求此恒力F的大小。()
如图所示,一倾角为 的足够长固定光滑斜面底端有一与斜面垂直的挡板M,物块A、B之间用一与斜面平行的轻质弹簧连接且静止在斜面上。现用外力沿斜面向下缓慢推动物块B,当弹簧具有5J的弹性势能时撤去推力,释放物块B 。已知物块A、B的质量分别为5kg和10kg,弹簧的弹性势能的表达式为 ,其中弹簧的劲度系数为k=1000N/m,x为弹簧的形变量,g=10m/s2。求

(1)撤掉外力时,物块B的加速度大小;
(2)外力在推动物块B的过程中所做的功;
(3)试判断物块A能否离开挡板M?若A能离开挡板M,求出物块A刚离开挡板M时,物块B的动能;若A不能离开挡板M,求出物块A与挡板M之间的最小作用力。
一个底面粗糙、质量为的劈放在粗糙的水平面上,劈的斜面光滑且与水平面成角;现用一端固定的轻绳系一质量为的小球,小球放在斜面上,小球静止时轻绳与竖直方向的夹角也为,如图所示,试求:

(1)当劈静止时绳子的拉力大小。
(2)当劈静止时地面对劈的摩擦力的大小。
(3)若地面对劈的最大静摩擦力等于地面对劈支持力的k倍,为使整个系统静止,k值必须满足什么条件?
如图所示,在倾角为θ的粗糙斜面上,一个质量为m的物体被水平力F推着静止于斜面上,物体与斜面间的动摩擦因数为μ,且μ<tanθ,求力F的取值范围.
如甲图所示,一根长度为的水平金属丝置于匀强磁场B中,与竖直放置的导轨接触良好,不计金属丝与导轨间的摩擦.可变电源可以提供任一方向的电流.金属丝由重力不计的细线与轻质弹簧秤连接,可以沿竖直方向上下滑动.弹簧秤己调零且读数准确.现测得多组实验数据,并作出如图乙所示的图像.

(1)在甲图中,当弹簧秤的读数为零时,流过水平金属丝的电流为       A,方向为      (填“向左”或“向右”).
(2)用螺旋测微器测得该金属丝的直径,如图丙所示,其读数为        mm.
1897年汤姆孙发现电子后,许多科学家为测量电子的电荷量做了大量的探索。1907~1916年密立根用带电油滴进行实验,发现油滴所带的电荷量是某一数值e的整数倍,于是称这数值e为基本电荷。
如图所示,完全相同的两块金属板正对着水平放置,板间距离为d。当质量为m的微小带电油滴在两板间运动时,所受空气阻力的大小与速度大小成正比。两板间不加电压时,可以观察到油滴竖直向下做匀速运动,通过某一段距离所用时间为t1;当两板间加电压U(上极板的电势高)时,可以观察到同一油滴竖直向上做匀速运动,且在时间t2内运动的距离与在时间t1内运动的距离相等。忽略空气浮力,重力加速度为g。
 
(1)判断上述油滴的电性,要求说明理由;
(2)求上述油滴所带的电荷量Q;
(3)在极板间照射X射线可以改变油滴的带电量。再采用上述方法测量油滴的电荷量。如此重复操作,测量出油滴的电荷量Qi,如下表所示。如果存在基本电荷,那么油滴所带的电荷量Qj应为某一最小单位的整数倍,油滴电荷量的最大公约数(或油滴带电量之差的最大公约数)即为基本电荷e。请根据现有数据求出基本电荷的电荷量e (保留3位有效数字)。
实验次序
1
2
3
4
5
电荷量Qi(10-18C)
0.95
1.10
1.41
1.57
2.02
如图所示,A、B两小球带等量同号电荷,A固定在竖直放置的L=10cm长的绝缘支杆上,B受A的斥力作用静止于光滑的绝缘斜面上与A等高处,斜面倾角为=300,B的质量为m=360g。

求:(1)B球对斜面的压力大小 
(2)B 球带的电荷量大小(g取10m/s2,结果保留两位有效数字)。
如图所示,气缸内装有一定质量的气体,气缸的截面积为,其活塞为梯形,它的一个面与气缸成角,活塞与器壁间的摩擦忽略不计,现用一水平力推活塞,汽缸不动,此时大气压强为,求气缸内气体的压强.
如图所示,物体叠放在物体上,置于水平地面上,水平力作用于,使一起匀速运动,各接触面间摩擦力的情况是
A、有向左的摩擦力
B、有向左的摩擦力
C、物体受到三个摩擦力作用
D、对地面有向右的摩擦力